The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection.
نویسندگان
چکیده
UNLABELLED Hepatitis C virus (HCV) is an important cause of chronic liver disease and is complicated by hepatocellular carcinoma (HCC). Mechanisms whereby the virus promotes cellular transformation are poorly understood. We hypothesized that the guanosine triphosphatase activity encoded in the HCV NS4B protein's nucleotide binding motif (NBM) might play a role in the transformation process. Here we report that NS4B can transform NIH-3T3 cells, leading to tumor formation in vivo. This transformation was independent of co-transfection with activated Ha-ras. Detailed analyses of NS4B mutants revealed that this transforming activity could be progressively inhibited and completely abrogated by increasing genetic impairment of the NS4B nucleotide binding motif. CONCLUSION NS4B has in vitro and in vivo tumorigenic potential, and the NS4B transforming activity is indeed mediated by its NBM. Moreover, our results suggest that pharmacological inhibition of the latter might inhibit not only HCV replication but also the associated HCC.
منابع مشابه
A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication.
Hepatitis C virus (HCV) is a major cause of viral hepatitis. There is no effective therapy for most patients. We have identified a nucleotide binding motif (NBM) in one of the virus's nonstructural proteins, NS4B. This structural motif binds and hydrolyzes GTP and is conserved across HCV isolates. Genetically disrupting the NBM impairs GTP binding and hydrolysis and dramatically inhibits HCV RN...
متن کاملAnalysis of Immumoreactivity of Heterologously Expressed Non-structural Protein 4B (NS4B) from Hepatitis C Virus (HCV) Genotype 1a
Background: Detection of hepatitis C virus specific antibodies is the initial step in chronic HCV diagnosis. HCV NS4B is among the most immunogenic HCV antigens and has been widely used in commercial Enzyme Immunoassays (EIA). Additionally, NS4B, a key protein in the virus replication, can be an alternative target for antiviral therapy. Objectives: Development of a new method for high-level ex...
متن کاملResistance to oncogenic transformation in revertant R1 of human ras-transformed NIH 3T3 cells.
A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be re...
متن کاملInhibition of expression of hepatitis C virus 1b genotype core and NS4B genes in HepG2 cells using artificial microRNAs.
The present study aimed to evaluate the silencing effect of artificial microRNAs (amiRNAs) against the hepatitis C virus (HCV) 1b (HCV1b) genotype core (C) and non-structural protein 4B (NS4B) genes. pDsRed-monomer-Core and pDsRed-monomer-NS4B plasmids, containing the target genes were constructed. A total of eight artificial micro RNA (amiRNA)-expressing plasmids, namely, pmiRE-C-mi1 to -mi4 a...
متن کاملInduction of mutation of a synthetic c-Ha-ras gene containing hypoxanthine.
The second base of codon 61 of a synthetic c-Ha-ras gene was replaced with a hypoxanthine residue in a site-specific manner. Transfection of this gene into NIH3T3 cells by the calcium phosphate procedure resulted in increased focus formation. Total DNA was extracted from transformed cells, and the sequences of the inserted c-Ha-ras DNA were analyzed by the polymerase chain reaction-single-stran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hepatology
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2008